
Making Progress in Reducing the Environmental Impact of Dairy Production and Things to Think About

> Mike Van Amburgh, Ryan Higgs, Larry Chase, Karl Czymmek and Quirine Ketterings Dept. of Animal Science

Outline for this short talk:

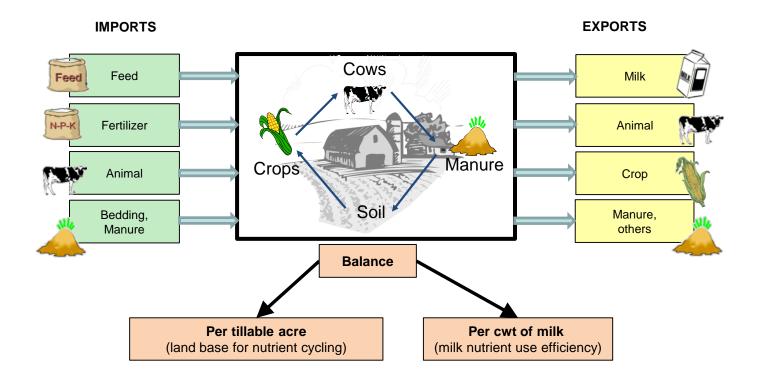
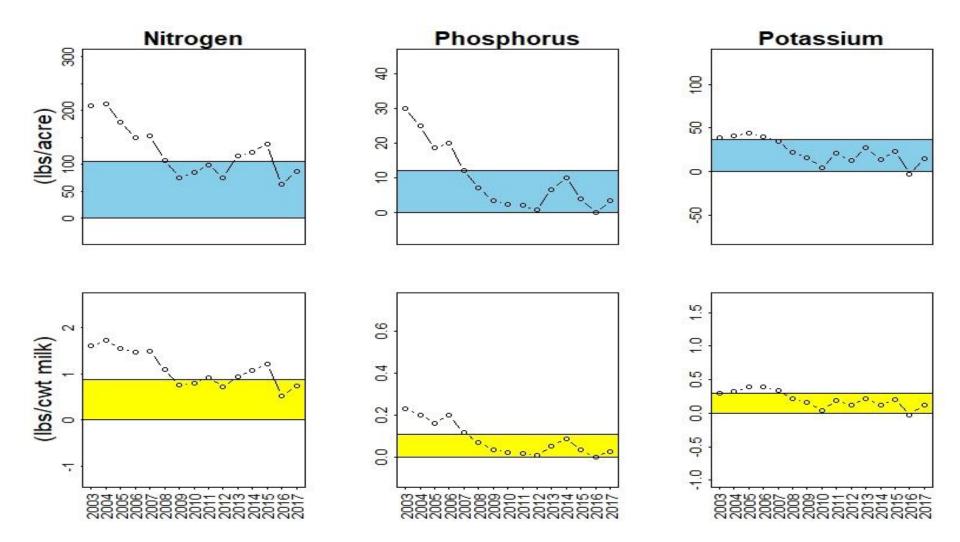

- We are making significant progress, but...
- Need science to come to our rescue however, it needs to relate on an emotional level
- We eat for nutrients, but those are not fully described in the environmental battle
- Everything we eat has an environmental impact (almond vs dairy)
- Need to understand the whole food system (almond vs dairy)
- Net Zero is coming both NY and Dairy Industry
- The nutrition supply chain (YOU) can help
- Need to be transparent

Table 5. Resource use and greenhouse gas emissions from U.S. dairy production in 2007 and 2017 per 1.0 MMT (million metric tonnes) of saleable energy-corrected milk


```
2007
                                                                   2017
                                                                                     2017 as a percentage of 2007
Resou
      Capper and Cady – 2007 to 2017
 Tota
 Cro
 N fe
 P fe
 K fe
 Her
      The industry is doing great things
 Inse
 Foss
 Elec
 Catt
 Irrig
     All categories reduced by 15 to 31% except
 San
 Tota
Waste
     for transport which increased by 12%
 Nitr
 Pho
 Mar
GHG
 Met
      That is amazing progress over 10 years!
 Nitr
 GHC
                                             2.20 \times 10^{8}
 GHG from cropping, kg CO<sub>2</sub>-eq
                                                                 1.75 \times 10^{8}
                                                                                               79.5
 GHG from manure application, kg CO<sub>2</sub>-eq
                                                                                              82.5
                                             4.77 \times 10^{7}
                                                                 3.93 × 107
 GHG from transport<sup>3</sup>, kg CO<sub>2</sub>-eq
                                             7.41 \times 10^{6}
                                                                 8.30 \times 10^{6}
                                                                                               112
 Total GHG<sup>4</sup>, kg CO<sub>2</sub>-eq
                                             2.10 \times 10^{9}
                                                                 1.70 \times 10^{9}
                                                                                               80.8
```

Capper and Cady, J. Anim. Sci. 2020

Whole-Farm Nutrient Mass Balances (NMBs)

Whole-Farm Feasible Nutrient Balances – 2003 to 2017

Cornell Net Carbohydrate and Protein System (CNCPS)

• Cattle nutrition model – any cow, anywhere

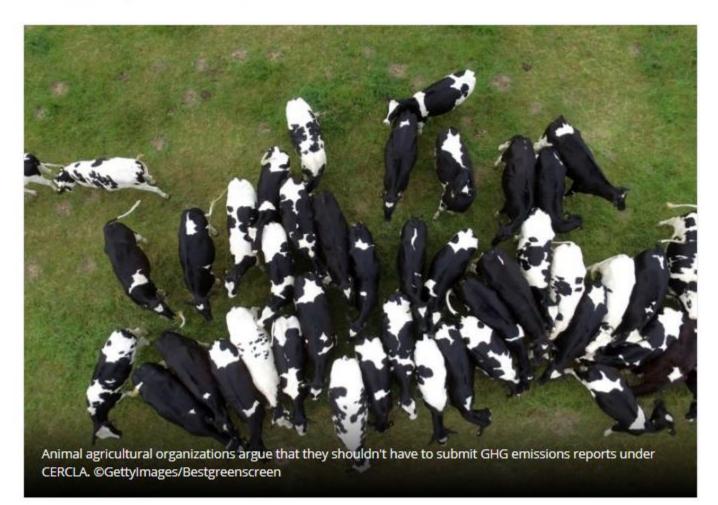
Year	Paper
1992	A net carbohydrate and protein system for evaluating cattle diets: I. Ruminal fermentation
1992	A net carbohydrate and protein system for evaluating cattle diets: II. Carbohydrate and protein availability
1992	A net carbohydrate and protein system for evaluating cattle diets: III. Cattle requirements and diet adequacy
1993	Net Carbohydrate and Protein System for Evaluating Cattle Diets: IV. Predicting Amino Acid Adequacy
2004	The Cornell Net Carbohydrate and Protein System model for evaluating herd nutrition and nutrient excretion
2008	Cornell Net Carbohydrate and Protein System: A model for precision feeding of dairy cattle

NY PFM Project – 3 years

- Herds selected in several counties
- PFM guidelines described needed to meet NRCS 592 Feed Management Standards
- Extension personnel and Feed Industry Professionals involved
- Herd visits conducted
- Forages sampled and analyzed routinely
- Cattle descriptions characterized (BW, etc)
- Diets analyzed through CNCPS 6.1 and 6.5

Initial and Final Diet Crude Protein and CNCPS Predicted Manure Nitrogen Excretion by Herd

Herd	Initial CP, %	Final CP, %	Initial Manure N Excretion, g/cow/d	Final Manure N Excretion, g/cow/d	Manure N Excretion Change, %	Manure N Excretion Change, kg/herd/yr
Α	16.0	14.9	358	323	-9.7	-383
В	16.3	14.9	319	282	-11.5	-730
С	20.5	16.0	510	362	-29	-4755
D	17.1	16.0	385	344	-10.6	-1138
E	19.0	16.2	465	370	-20.4	-6520
F	17.4	16.5	456	423	-7.2	-5241
G	16.7	15.7	424	345	-18.6	-16,296
H	16.9	16.2	422	400	-5.2	-2128

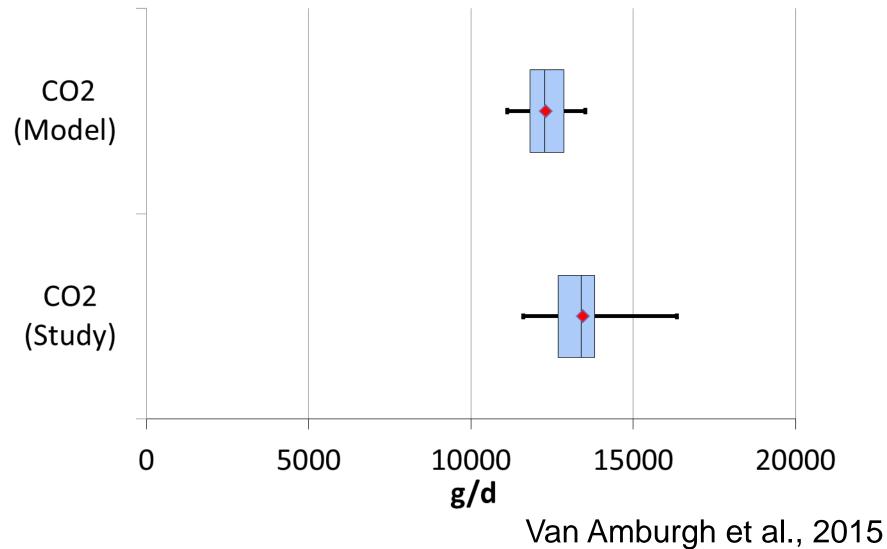

Milk income, total feed cost and income over feed cost, \$/cow/day

ltem	Herd A	Herd B	Herd C	Herd D	Herd E	Herd F	Herd G	Herd H
Milk Income, \$	9.67	12.65	13.30	16.73	14.63	16.97	16.75	13.80
ITFC, \$	4.86	4.80	5.30	5.41	6.45	6.49	6.64	5.62
FTFC, \$	4.69	4.80	4.84	5.21	5.63	6.44	6.18	5.53
IOTFC, \$	4.81	7.85	8.00	11.32	8.18	10.48	10.11	8.18
FIOTFC, \$	4.98	7.85	8.46	11.52	9.00	10.53	10.57	8.27
IOTFC Change, \$/cow/year	62	0	168	73	299	18	168	33
IOPFC Change, \$/cow/year	77	76	277	37	219	18	361	33

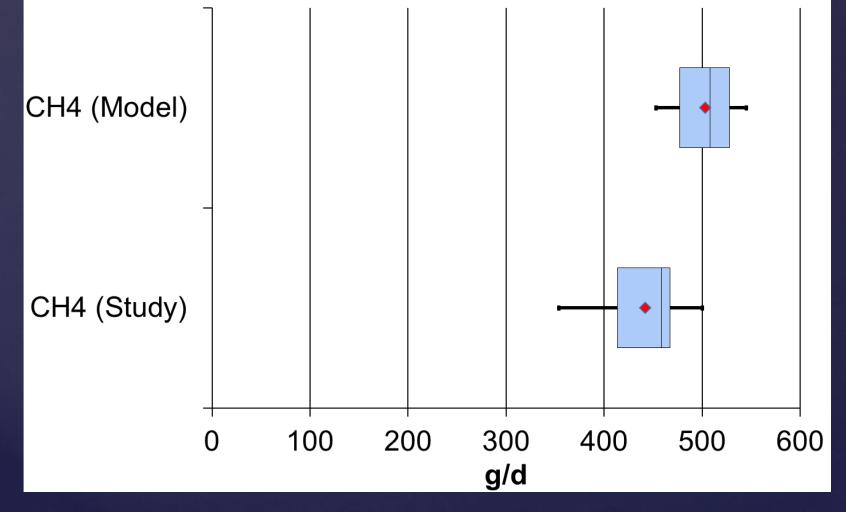
Dairy industry pushes back against livestock emissions reporting with new bill

By Mary Ellen Shoup 🕑 20-Feb-2018 - Last updated on 20-Feb-2018 at 09:45 GMT

As part of the FARM Act, a new bipartisan bill was introduced in the US Senate that would exempt farms, ranches, and other agricultural operations from having to report animal waste emissions data required by the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA)

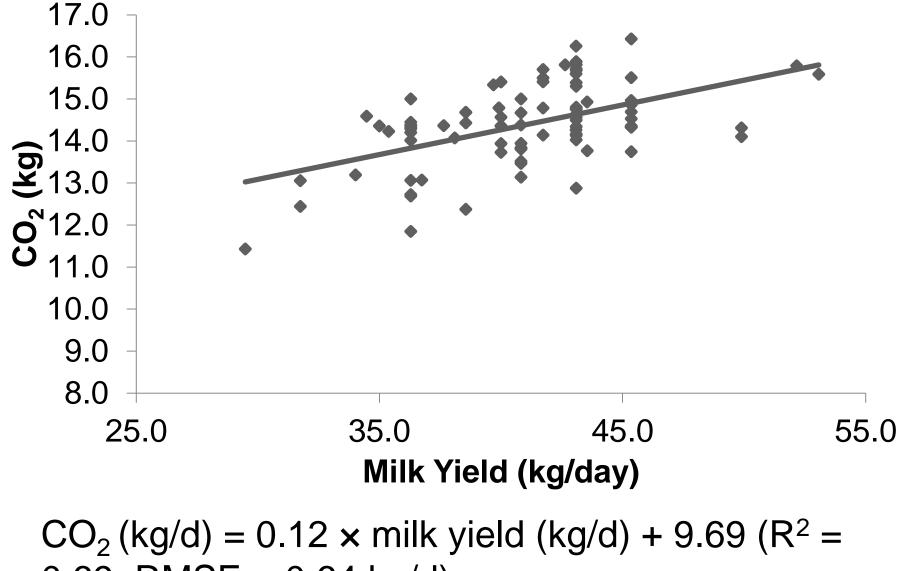

Objectives

1. Develop the CNCPS to predict carbon dioxide and methane emissions per cow per day and per unit of milk production

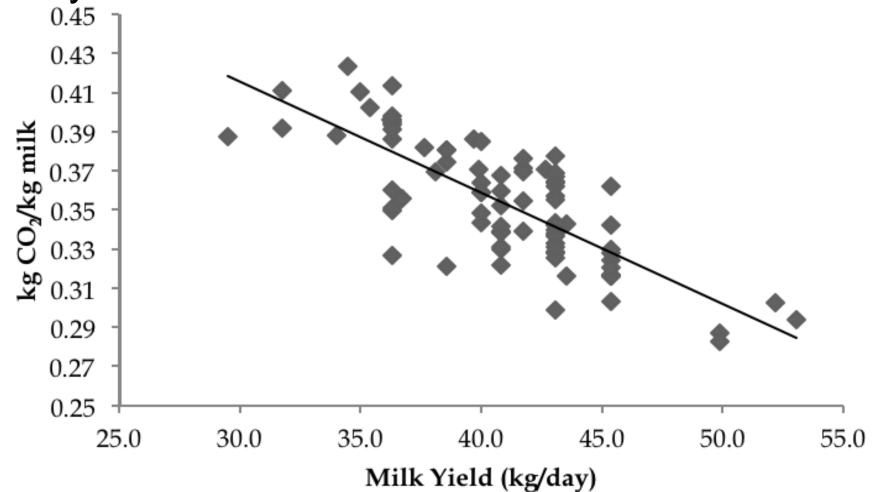

2. Evaluate the models' ability to predict these greenhouse gases

3. Develop a database of diets and the level of byproducts fed to dairy cattle

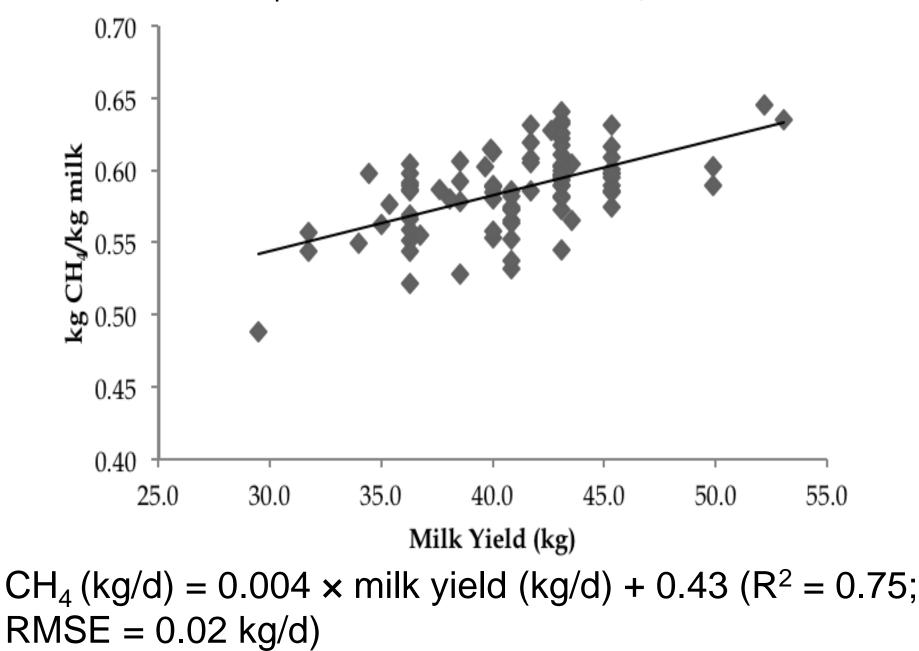
 Characterize the diets to evaluate the impact of feeding byproducts on greenhouse gas emissions compared to a discrete carbon release – combustion CO₂ production predicted by the CNCPS compared with observed from 5 studies and 22 treatments



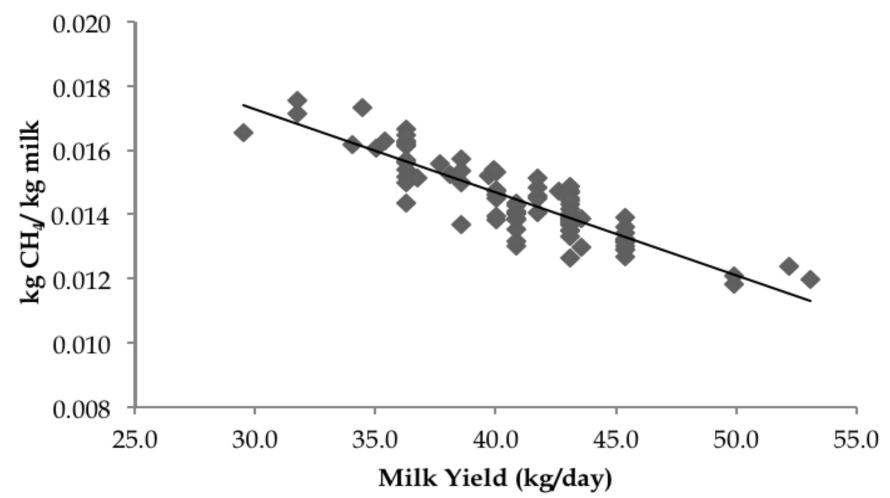
CH₄ production predicted by the CNCPS compared with observed from 5 studies and 22 treatments


Van Amburgh et al., 2015

Predicted CO₂ emissions versus Milk Yield


0.69; RMSE = 0.64 kg/d)

Predicted CO₂ emissions per kg of milk versus milk yield



 CO_2 Kg/kg milk = -0.006 × milk yield (kg/d) + 0.59 (R² = 0.81; RMSE = 0.02 kg CO_2 / kg milk.

Predicted CH₄ emissions vs milk yield

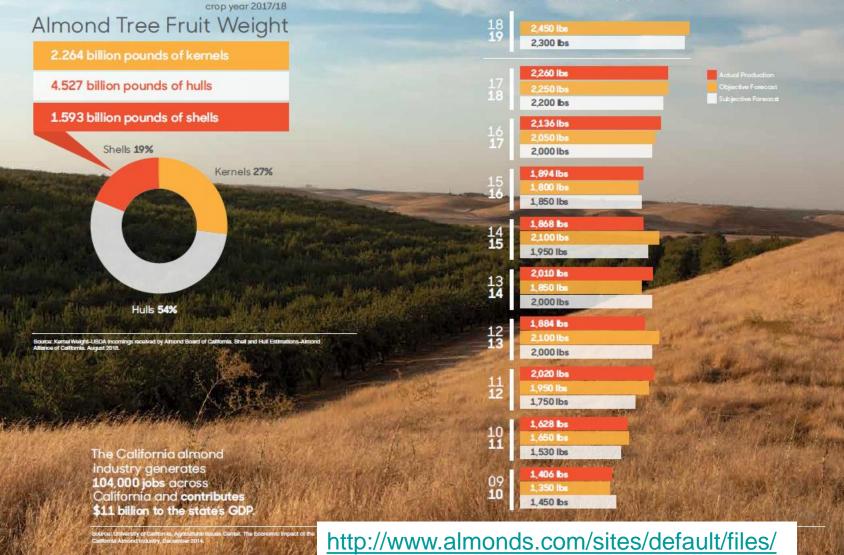
Predicted CH₄ emissions per kg of milk versus milk yield

kg CH₄/Kg milk = $-0.0003 \times \text{milk yield (kg/d)} + 0.03$ (R² = 0.89; RMSE = 0.0005 kg CH₄/ kg milk. Comparison of gas released as CO_2 and CH_4 described as CO_2 equivalents of byproduct disposal when fed to dairy cows for milk production or incinerated as a discrete form of disposal for comparison of gaseous emissions

Variable		Mean	SD	Min	Max
Dietary byproduct inclusion	% ration DM	31	9	13	57
	kg CO ₂				
CO ₂ from byproducts	eq./cow/d	4.5	1.4	1.8	7.4
	kg CO ₂				
CH ₄ from byproducts	eq./cow/d	4.6	1.4	1.9	7.9
Total GHG gas release from	kg CO2				
digestion ¹	eq./cow/d	9	2.8	3.7	15.3
	_				
CO ₂ incineration	kg	46.2	4.9	25	54.9

¹Total gas release = CO_2 (kg/d) + CH_4 (kg CO_2 Eq./d)

Predicted carbon dioxide and methane release based on the total amount of dry matter consumed (DMI), byproduct inclusion (kg) and as a ratio of the milk yield


Variable	Mean	SD	Min	Max
DMI				
kg CO ₂ /kg DMI	0.576	0.011	0.557	0.618
kg CH ₄ /kg DMI	0.024	0.001	0.021	0.027
Byproduct				
kg CO ₂ /kg BP	0.050	0.018	0.029	0.117
kg CH ₄ /kg BP	0.002	0.001	0.001	0.005
Milk Yield				
kg CO ₂ /kg milk	0.353	0.031	0.283	0.423
$kg CH_4/kg milk$	0.014	0.001	0.012	0.018

Gas production and combustion of top 5 byproducts (% DM inclusion)

	% Diets with byproduct	Avg. Inclusion (% of diet)	BP DM fed (kg/cow)	Kg GHG/cow /d (CO ₂ Eq.)	Kg GHG (CO2 Eq.)/kg milk
Corn Gluten Feed	37	8.0	2.0	2.32	0.057
Ethanol Distillers	48	5.3	1.3	1.55	0.038
SBM	63	5.6	1.4	1.61	0.039
Whole cottonseed	69	6.0	1.5	1.74	0.043
Canola Meal	66	8.1	2.0	2.29	0.056

2,263,500 tons hulls

crop years 2009/10-2018/19 | million pounds California Almond Forecasts vs. Actual Production

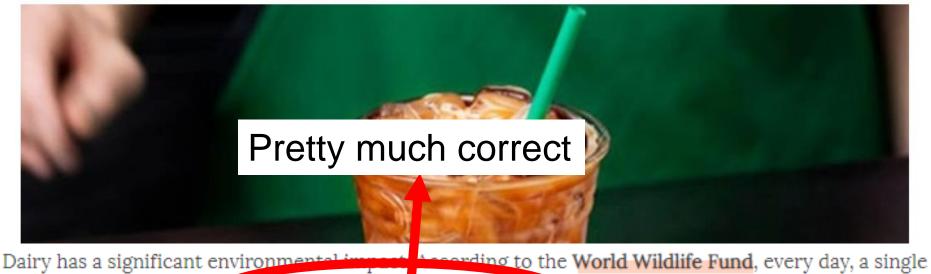
Almond_Almanac_2018_F_revised.pdf

What do you do with all of those hulls?

- 1.8 million dairy cattle in CA
- 5.2 million beef cattle
- Assume ~70% consume hulls (7 million)
- That's 648 lb hull per cow or about 1.8 lb/cow/day

Bottom line: If you like your almond beverage, thank a cow for making it affordable and possible

JANUARY 22, 2020


Starbucks Taking Aim at Milk Is Latest Blow to Beaten-up Dairy

BUSINESS | BY: BLOOMBERG NEWS

STARBUCKS MAY PHASE OUT DAIRY TO COMBAT CLIMATE CHANGE

Will Starbucks ditch dairy to fight climate change? CEO Kevin Johnson revealed the chain will introduce more plant-based alternatives for the environment.

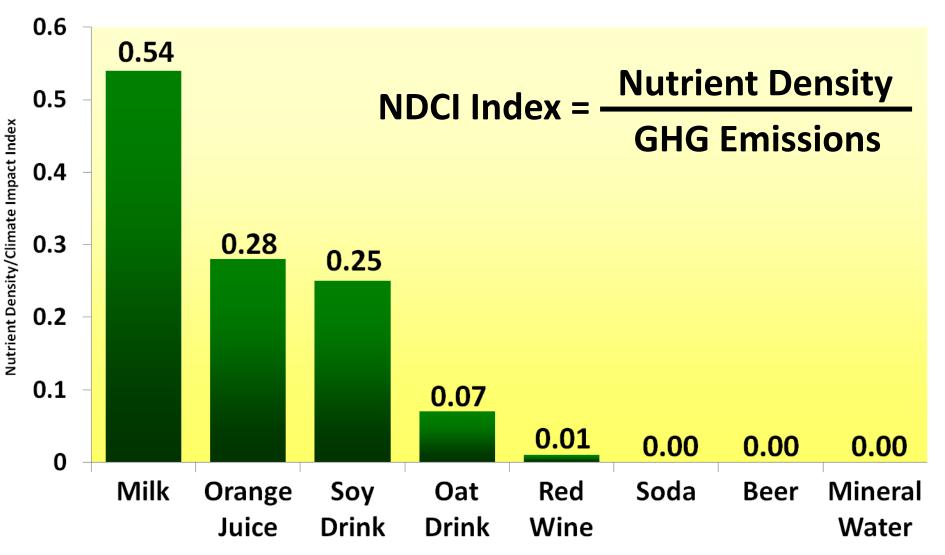
dairy cow produces are and 17 gallons of manure and urine. "D properly managed, manure emits greenhouse gases, pollutes water and an, and damages wildlife habitats," it says.

Not entirely sure of their math, per gallon seems high – definitely counting rain water

In a statement sent to LIVERINDER, starbucks said that it has not announced plans to 'phase out' dairy as part of its strategy to become a resource positive company." Instead, it will "expand plant-based options, migrating toward a more environmentally friendly menu."

Cows and Water

- 1,650 lb cow making 88 lb milk in 70°F weather consuming 53 lb dry matter
- Will consume approximately 33 to 38 gallons
 of water
- Need to decide how much water is necessary to grow crops – Starbucks is implying at least 111 gallons (921 lb) to grow the forage and grain she eats and they allocate all of this to one gallon (8.6 lb) of milk (107:1) – seems high if you count rainwater
- This ignores the byproducts and upcycling of nutrients and associated water


Beverages Vary in Nutrient Density and Greenhouse Gas Emissions

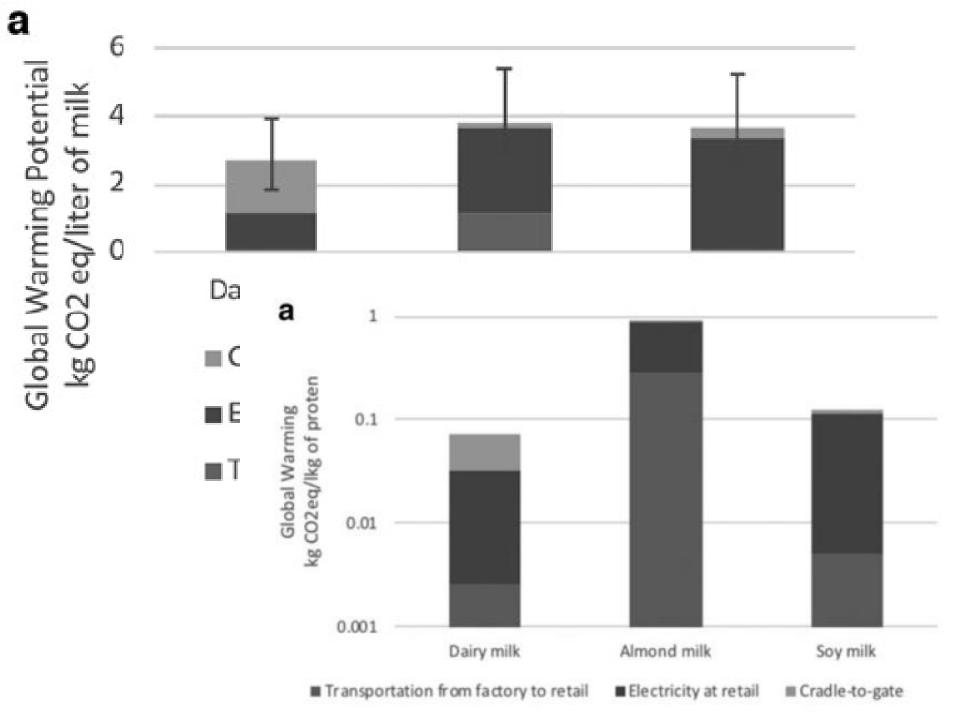
	% NNR in 100g product	Nutrient Density	GHG Emissions gCO2-eq/g product
Milk	126	53.8	99
Orange juice	90	17.2	61
Soy drink	53	7.6	30
Oat drink	32	1.5	21
Red wine	24	1.2	204
Soda	7	0	109
Mineral water	2	0	10
Beer	18	0	101

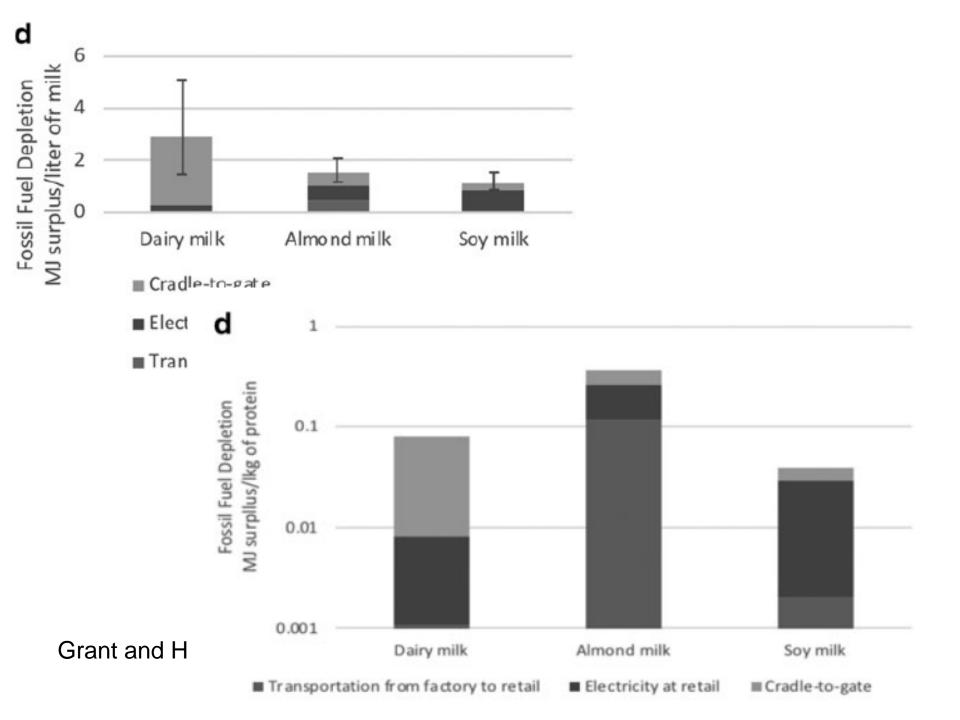
NNR – Nordic Nutrient Recommendations

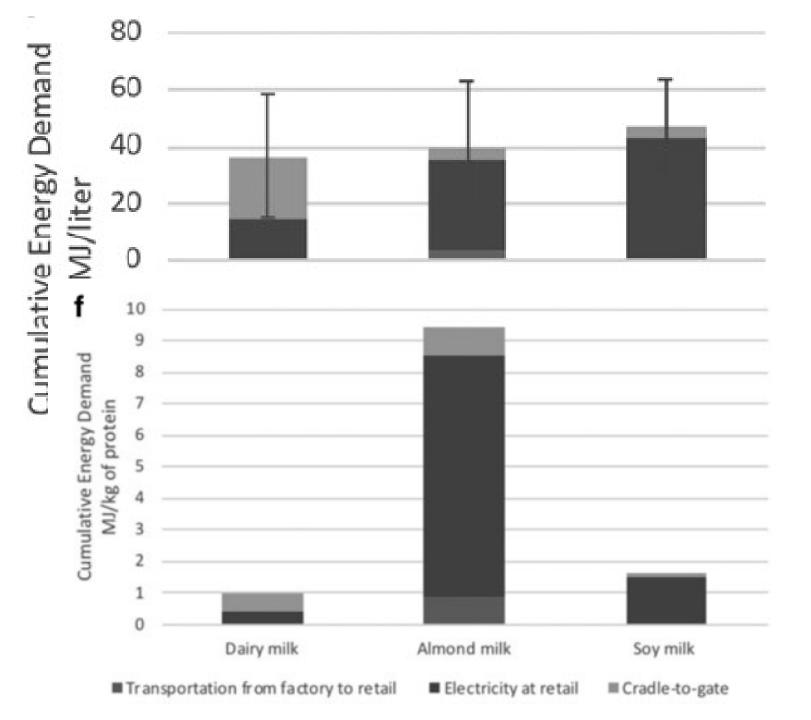
Smedman et al. 2010 Nutrient density of beverages in relation to climate impact. Food & Nutr.

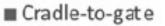
Nutrient Density Must Be Included When Assessing Environmental Impact

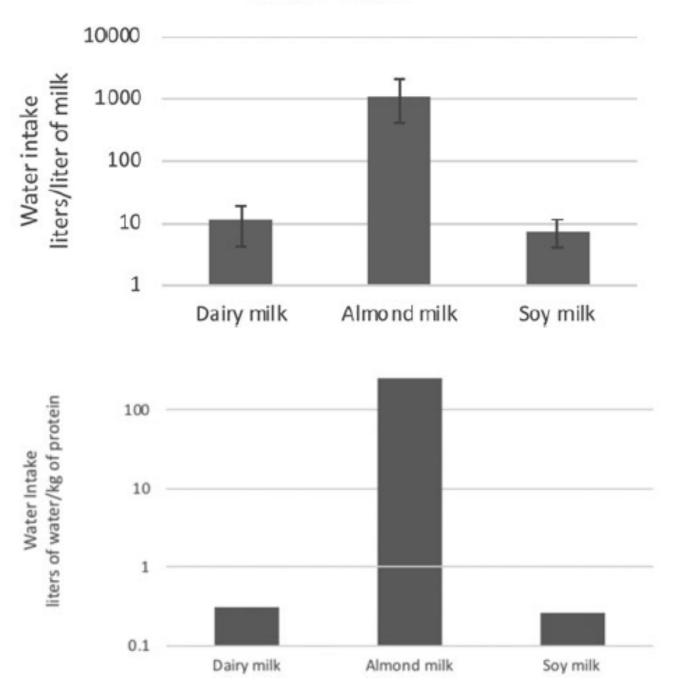
Based on Smedmen et al. 2010


ENVIRONMENTAL ENGINEERING SCIENCE Volume 35, Number 11, 2018 © Mary Ann Liebert, Inc. DOI: 10.1089/ees.2018.0233


Comparative Life Cycle Assessment of Milk and Plant-Based Alternatives


Courtney A. Grant and Andrea L. Hicks*,*


Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, Wisconsin.


Received: May 21, 2018 Accepted in revised form: August 30, 2018

Grant and Hicks, 2018

AUGUST 9, 2019

Your Dairy Can Get To Net Zero GHG Emissions

BUSINESS | BY: MIKE OPPERMAN

How Can the Supply Chain Help?

- Here is an idea borrowed from Europe:
- Record and report the amount of C, N, P, and K sold to the dairy or business every year so they can document what was supplied to them
- This helps in at least two ways:
 - Provides documents about the tons of nutrients coming onto the farm
 - Provides opportunity to understand how efficient the nutrients are being used

22,000 lactating cows – one site with all the heifers and dry cows

Milk processed and packaged on site

EVERYTHING is transparent

Summary

- We are making significant progress
- Need science to come to our rescue however, it needs to relate on an emotional level
- We eat for nutrients, but those are not described in the environmental battle
- Everything we eat has an environmental impact
- Need to understand the whole food system what to do with byproducts of the human food system
- Net Zero is coming
- The nutrition supply chain (YOU) can help
- Need to be transparent

Outline

- Brief history of CNCPS
- Concept of precision feeding
- Modifications to the CNCPS
- Application of CNCPS in Precision Feed Management (PFM)
- Greenhouse gas, dairy and byproducts
- Use of CNCPS to predict and evaluate GHG emissions at farm level
- Summary

CNCPS Quick History –

A Net Carbohydrate and Protein System for Evaluating Cattle Diets: I. Ruminal Fermentation

> J. B. Russell^{*,†}, J. D. O'Connor^{†,1}, D. G. Fox[†], P. J. Van Soest[†], and C. J. Sniffen^{†,2}

*U.S. Dairy Forage Research Center, ARS, USDA, Madison, WI 53706 and U.S. Plant, Soil, and Nutrition Laboratory, Ithaca, NY 14853 and *Department of Animal Science, Cornell University, Ithaca, NY 14853

A Net Carbohydrate and Protein System for Evaluating Cattle Diets: II. Carbohydrate and Protein Availability

C. J. Sniffen*.1, J. D. O'Connor*.2, P. J. Van Soest*, D. G. Fox*, and J. B. Russell*.1

*Department of Animal Science, Cornell University, Ithaca, NY 14853 and [†]U.S. Dairy Forage Research Center, ARS, USDA, Madison, WI 53706 and U.S. Plant, Soil, and Nutrition Laboratory, Ithaca, NY 14853

A Net Carbohydrate and Protein System for Evaluating Cattle Diets: III. Cattle Requirements and Diet Adequacy¹

D. G. Fox*, C. J. Sniffen*.², J. D. O'Connor*.³, J. B. Russell*.[†], and P. J. Van Soest*

*Department of Animal Science, Cornell University, Ithaca, NY 14853 and [†]U.S. Dairy Forage Research Center, ARS, USDA, Madison, WI 53706 and U.S. Plant, Soil, and Nutrition Laboratory, Ithaca, NY 14853

A Net Carbohydrate and Protein System for Evaluating Cattle Diets: IV. Predicting Amino Acid Adequacy

J. D. O'Connor¹, C. J. Sniffen², D. G. Fox³, and W. Chalupa⁴

Department of Animal Science, Cornell University, Ithaca, NY 14853

The Cornell Net Carbohydrate and Protein System model for evaluating herd nutrition and nutrient excretion

D.G. Fox^{a,*}, L.O. Tedeschi^a, T.P. Tylutki^a, J.B. Russell^b, M.E. Van Amburgh^a, L.E. Chase^a, A.N. Pell^a, T.R. Overton^a

Cornell Net Carbohydrate and Protein System: A model for precision feeding of dairy cattle $\stackrel{k}{\approx}$

T.P. Tylutki ^{a,*}, D.G. Fox ^a, V.M. Durbal ^{a,1}, L.O. Tedeschi^b, J.B. Russell^c, M.E. Van Amburgh ^a, T.R. Overton ^a, L.E. Chase ^a, A.N. Pell ^a

J. Dairy Sci. 98:6340–6360 http://dx.doi.org/10.3168/jds.2015-9379

© 2015, THE AUTHORS. Published by FASS and Elsevier Inc. on behalf of the American Dairy Science Association[®]. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

Updating the Cornell Net Carbohydrate and Protein System feed library and analyzing model sensitivity to feed inputs

R. J. Higgs, L. E. Chase, D. A. Ross, and M. E. Van Amburgh¹

J. Dairy Sci. 98:6361–6380 http://dx.doi.org/10.3168/jds.2015-9378

(© 2015, THE AUTHORS. Published by FASS and Elsevier Inc. on behalf of the American Dairy Science Association[®]. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

The Cornell Net Carbohydrate and Protein System: Updates to the model and evaluation of version 6.5

M. E. Van Amburgh,^{*1} E. A. Collao-Saenz,† R. J. Higgs,* D. A. Ross,* E. B. Recktenwald,* E. Raffrenato,‡ L. E. Chase,* T. R. Overton,* J. K. Mills,§ and A. Foskolos*

Evaluating and Predicting N Excretion

- Urinary N is main form of excreted N
- Fecal N is fairly constant

	Intake N	Fecal N	Urinary N
Reference	(g/d)	(g/d)	(g/d)
Kauffman			
and St-Pierre, 2001	429	178	93
	460	184	101
	572	198	190
Hristov and Ropp, 2003	658	208	233
	754	176	279

Fecal, Urinary and Total Manure Nitrogen Excretion Predictions in CNCPS

Equation	Slope	R ²	MSE	Variance component, (%)		
				Study	Slope	Residual
Fecal N	1.00	0.97	107.66	85.33	0.01	14.66
Urinary N	0.93	0.97	162.17	70.79	0.01	29.20
Manure N	0.97	0.99	154.14	56.82	0.00	43.17
Total N	1.00	1.00	0.05	72.20	0.00	27.80

Higgs et al., 2012, J. Dairy Science

Excretion Report – Fecal, Urine and Total Manure N

1820 total animals

Feces	Urine	Manure	Fecal N	Urine N	Manure N
Total MT					
19732.87	9771.42	29504.28	99.28	55.95	155.23

PRECISION FLEEDING Bibb the Barget is serveral counts.

120 310

DAINYWERDINE THIDRIR. COM

ANDOLT 2011

Why Precision Feed Management?

- 1. Improve dairy farm profitability.
- 2. Improve the efficiency of nutrient use.
- 3. Decrease nutrient excretion into the environment (soil, water, air).
- 4. Help to comply with environmental regulations.
- NY currently concerned with N and P, and methane is on the short list

What is Precision Feed Management (PFM)?

- Definition by NY PFM Working Group
- "The continual process of providing adequate, but not excess, nutrients to the animal and deriving a majority of nutrients from homegrown feeds through the integration of feeding and forage management for the purpose of maintaining environmental and economic sustainability"

NY PFM Project

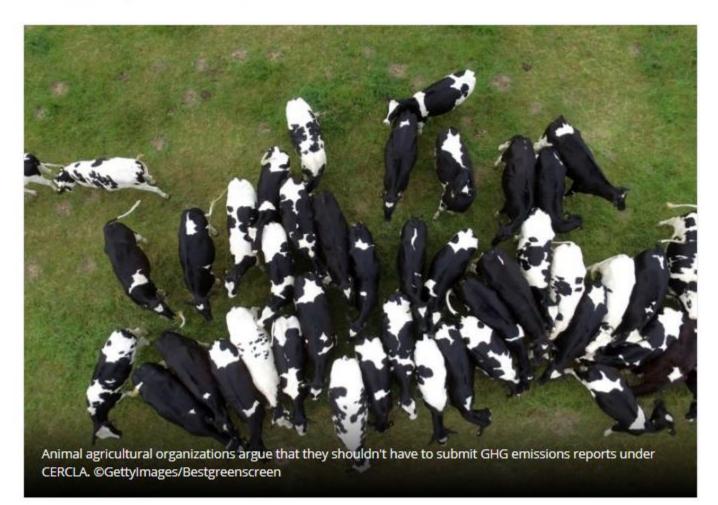
- Diets were evaluated with CNCPS v6.1 or 6.5
- Diets were formulated to reduce excess feed N three phase approach – reduce rumen N balance, reduce urinary N excretion, improve efficiency of meeting MP supply
- Phosphorous was already low in these herds so difficult to reduce – at NRC, 2001 lower limits
- Forage analysis didn't inlcude aNDFom digestibility for first 1.5 yr, but did measure and use the second half of study
- All prices (feed and milk) held constant for evaluation to understand management changes

Herd information for the precision feed management study

Herd	Cow number	Barn Type [#]	Milking, times/d	Feeding System	DHI§	Milk, \$/cwt.
Α	30	TS	2	Component	No	19.34
В	54	TS	2	Component	No	19.46
С	88	TS	2	TMR	Yes	20.46
D	76	TS	2	TMR	Yes	22.31
E	188	FS	2	TMR	Yes	19.77
F	435	FS	3	TMR	Yes	19.73
G	565	FS	3	TMR	Yes	19.25
н	265	FS	2	TMR	No	18.41

Diet phosphorus and manure phosphorus excretion by herd

Herd	Initial Diet P, g/day	Final Diet P, g/day	Initial Manure P, g/day	Final Manure P, g/day	Manure P, Excretion, % Change	Manure P Excretion, kg/herd/yr
Α	0.39	0.36	51.2	46.1	-10	-55.8
В	0.43	0.38	52.1	42.8	-17.8	-185.1
С	0.38	0.36	51.0	43.7	-14.3	-234.6
D	0.35	0.36	46.4	48.1	+3.7	47.2
Е	0.34	0.33	58.2	53.3	-8.4	-336.2
F	0.36	0.38	52.3	55.6	+4.3	365.2
G	0.32	0.31	36.4	31.2	-14.3	-1072.6
H	0.37	0.38	50.1	52.0	+3.8	183.8


PFM and CNCPS

- Implementation of a PFM program can have positive impacts on N and P utilization and increase income to the dairy
- The CNCPS was an effective formulation tool to reduce dietary N and P without losing productivity and reducing the environmental impact of milk production
- Further, the predictions of the CNCPS allow the user to quantify those changes for use by CAFO planners

Dairy industry pushes back against livestock emissions reporting with new bill

By Mary Ellen Shoup 🕑 20-Feb-2018 - Last updated on 20-Feb-2018 at 09:45 GMT

As part of the FARM Act, a new bipartisan bill was introduced in the US Senate that would exempt farms, ranches, and other agricultural operations from having to report animal waste emissions data required by the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA)

Byproduct feeding and the Environmental Impact of Dairy Cattle

 There is a significant misunderstanding of the role dairy cows play in utilization of byproducts of the human food chain

Cows Fed Candy Instead Of Corn On Kentucky Ranch Affected By Drought

Posted: 08/21/2012 3:38 pm Updated: 08/21/2012 3:46 pm

Like 4,788 people like this.

www.huffingtonpost.com/.../cows-fed-candy-drought_n_1819366.html

😳 🗿 🏹

Fass who knew?

EAT LIKE A COW They chow down on 50+ pounds of food a day-that's like 7,250 gummies.

Was this your dinner's dinner?

ED GABRIELS FOR HALLEY RESOURCES.

HOLY WOW!

Farmers are giving cattle stuff like stale candy and cookies instead of pricey feed. So even if you're avoiding junk, your beef probably isn't. The sweets don't alter the food's nutritional value (or even hurt the animals' health), but still.....

Source: Michael Van Amburgh, Ph.D., associate professor of Animal Science at Cornell University

Self Magazine March '13 By-product Utilization in Dairy Cattle Diets

- Mowrey et al., 1999 characterized byproduct feeds around the country
 - 21.7% in SE region fed citrus pulp
 - 13.3% in NW and 16.7% in SW area of the country fed almond hulls
- There is no single database or reference at this time
- USDA did keep track at one time, but that service is now non-existent
- Contacted AFIA and they did not have this type of data

Carbon Dioxide Prediction

- Casper and Mertens, 2010 ADSA abstract
- Based on the measurements at the USDA-Beltsville Energy Metabolism Unit

 $CO_2 = (821.3 + (126.0 \times DMI) - (1.18 \times milk)) / 0.27$

 Also evaluated the equation of Kirchengessner et al, 1991 for comparison:

 $\overline{\text{CO}_2} = (-1.4 + (0.42 \times \text{DMI}) + (0.045 \times \text{BW}^{0.75}))/(0.27)$

USDA-Beltsville Energy Metabolism Unit dataset

- 3,018 individual digestion metabolism balance trials
- 1,351 balance trials involving lactating cows
- Lactating Beef Cow study excluded (milk yield)
- Ruminal infusion study (Orskov) excluded
- 1,252 individual metabolism trials with milk production being > 5 kg/d were used in the data analysis

Casper and Mertens, 2010

Comparison of CO_2 emissions from dairy cows between Casper and Mertens (2010) and Kirchengessner et al, (1991) prediction equations

	Casper and Mertens, 2010	Kirchgessner et al., 1991				
	CO ₂ (g/cow/d)					
Mean	14,281	14,775				
SD	1,181	1,244				
Min	9,172	9,059				
Max	16,429	17,187				

Methane Equations

 For dairy cattle: CH₄ (MJ/d) = 45.98 – (45.98e^{(-1*(((-0.0011*starch/ADF)+0.0045*MEintake}, where starch and ADF are kg of dry matter consumed and ME intake is in megajoules

(Mills et al. 2003)

- For beef cattle: CH₄ (MJ/d) = 2.94 + 0.0585 * ME intake (MJ/d) + 1.44 * ADF (kg/d) 4.16 * lignin (kg/d).
 (Ellis et al. 2007; equation 14b)
- Both equations chosen due to high R² and low RMSE

Van Amburgh et al., 2015

Data for analysis using CNCPS:

- Lactating dairy cattle diets were requested from professional nutritionists around the U.S.
- Received 91 diets from 70 different farms from 10 states across the U.S. from the following states: AZ, CA, FL, ID, MI, NY, PA TX, VT, and WI
- Almost all diets came in a CNCPS format
- Complete set of diet ingredients, including chemical analysis of individual ingredients as well as a complete diet nutrient summary

Description of the data used in this study for input into the CNCPS v6.5. Data from 91 farms in 10 states around the U.S.

Item	Mean	SD	Min	Max
Dietary Characteristic				
DMI (lb per cow/day)	55.1	4.62	40.8	65.0
ADF (%DM)	19.3	1.5	15.7	23.4
NDF (%DM)	34.5	3.2	16.1	31.6
CP (%DM)	17.1	1.3	14.7	23.2
Starch (%DM)	24.5	3.2	16.1	31.6
By-Products (%DM)	31.2	9.4	9.4	56.7
Animal Characteristic				
BW (lb)	1427	95	969	1662
Milk yield (lb/day)	90.4	9.2	65.0	117.0
Milk fat (%)	3.7	0.2	3.3	4.5
Milk protein (%)	3.0	0.1	2.8	3.2

Carbon Dioxide from Combustion

Carbon composition and ash content of each byproduct was calculated using the equation of Adams et al. (1951):

%C = %VS/1.8

Where VS = volatile solids and %VS = 100-%ash, (attributing to carbon, oxygen and nitrogen)

Ash = mineral elements that will not oxidize upon combustion and C= carbon

Summary

- A practicing nutritionist can evaluate the environmental impact of a particular diet, group or herd on an N, P or GHG basis.
- This can be useful to both dairy producers and CAFO planners in the preparation and deployment of nutrient management plans

Summary

- Total amount of N and P consumed and excreted can be forecasted given a specific set of forages, byproducts, concentrates and animals at the pen, barn or farm level
- The same calculations can be made for GHG, although there is no current regulatory demand for that information
- The cow fulfills a role in society by upcycling byproducts of the human food chain into high quality nutrient source which also reduces the costs of the primary product

Thank you for your attention

Credit for Use of Human Food & Fiber Byproducts Further Reduces the Carbon-Footprint

of Milk

Oil extraction

- Almond hulls
- Canola meal
- Cotton hulls
- Cotton seed meal
- Linseed meal
- Peanut meal
- Soy hulls & meal
- Sunflower hulls & meal

Brewing & Spirits

- Brewers grains
- Brewers solubles
- Brewers yeast
- Distillers grains

Grain milling

- Bran (corn, wheat, rice)
- Cereal fines
- Midds (corn, wheat, barley)

Clothing

Whole cotton seed

Fruit/Vegetable processing

- Pomace (apple, tomato, carrot)
- Vine silage (peas & legumes)
- Corn stover
- Potato peels

Citrus processing

Citrus pulp

Ethanol production

• Distillers grains (corn, milo, barley, sorghum)

Dry corn milling for corn flour & grits

- Corn bran
- Hominy feed

Wet corn milling for starch, sweeteners & oil

- Corn germ meal
- Corn gluten feed

Sugar processing

- Beet pulp
- Molasses

Fish processing

Fish meal

Cheese manufacturing

• Whey

Baking industry

- Bakery by-products
- Expired product

Chocolate manufacturing

- Candy by-products
- Confectionary waste

Human foods that fail grading

- Starches, oils
- Grains, flour
- Vegetables

Nutritional and greenhouse gas impacts of removing animals from US agriculture

Robin R. White^{a,1,2} and Mary Beth Hall^{b,1,2}

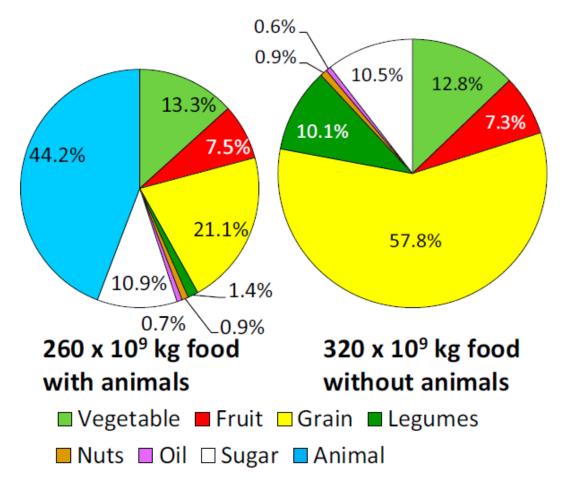
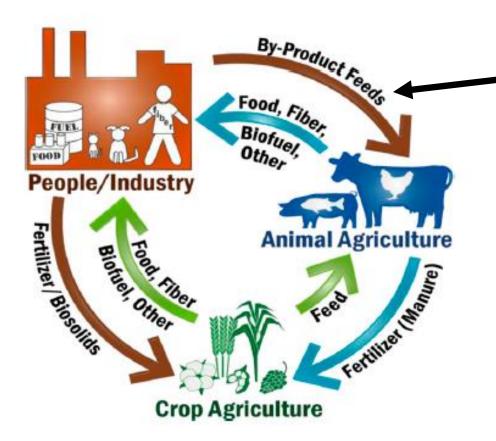



Fig. 3. Amounts and proportions of foods available in systems with and without animal inputs. Graphs are sized proportionally to the amounts of food available.

PNAS, 2017

Yearly Contributions, kg People/Industry

To Animal Agriculture: By-product feed: 4.32x10¹⁰

Crop Agriculture

- To People/Industry:
- Food:1.72x1011
- Non-food: 1.28x1011
- To Animal Agriculture:
- Crops: 1.12x1011

Animal Agriculture

- To People/Industry
- Food: 1.20x1011
- Non-food: 1.22x1010
- To Crop Agriculture
- Manure N: 4.01x109
- Manure P: 1.69x109
- Manure K: 1.88x10⁹
- Manure S: 2.84 x108

This part is actually abig deal economically and environmentally

Their calculation is 4.32 x 10¹⁰ kg

That is 43,200,000 metric tons of byproducts

In 2014, in the **United States**, about 258 million **tons** of municipal solid waste (MSW) were generated. EPA data

Over 89 million **tons** of MSW were recycled and composted https://www.epa.gov/smm/advancing-sustainablematerials-management-facts-and-figures

White and Hall, PNAS 2017

White and Hall, PNAS 2017

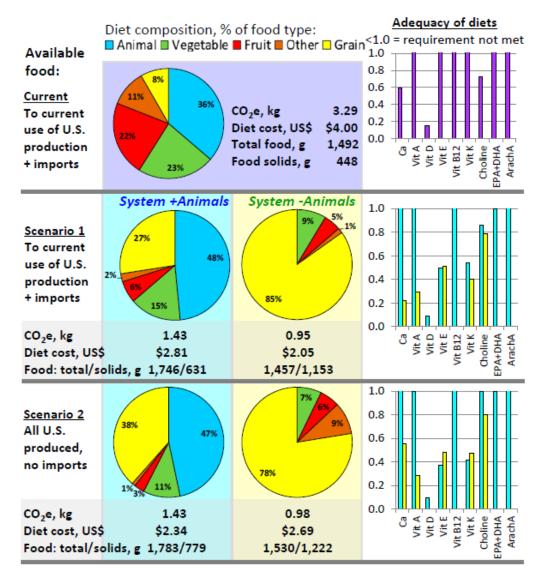
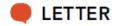



Fig. 4. Comparison of the daily diet composition, CO₂e emissions, intake, cost, and nutrient adequacy of the current US diet compared with a series of optimized diets with and without (modeled) animal-derived foods. Bar graphs indicate dietary adequacy of specific nutrients by scenario; purple indicates current diet, blue indicates diet with animals, yellow indicates plants-only diet. "Other" represents nuts, legumes, fats, and sweeteners. ArachA, arachidonic acid.

In PNAS - response to White and Hall

Causing confusion in the debate about the transition toward a more plant-based diet

Koenraad Van Meerbeek^{a,b,1} and Jens-Christian Svenning^{a,b}

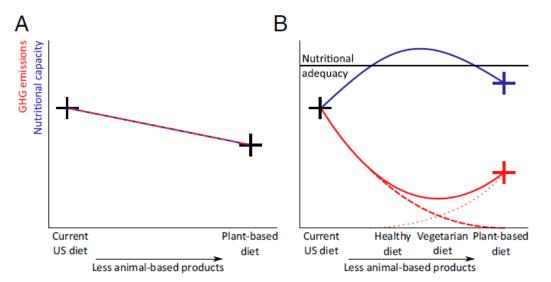


Fig. 1. (A) Implicitly assumed linear relationship between the share of animal-based products in the American diet and GHGE (in red) and nutritional capacity (in blue) by White and Hall (1). The black crosses represent results for GHGE and nutritional capacity of the considered diets, as calculated in their analysis. (B) More likely (although uncertain) relationships (solid lines), with the optimum not situated in one of the two considered scenarios. Red and blue cross indicate more likely levels of GHGE and nutritional capacity of a plant-based diet. The net GHGE (solid red line) achieve a minimum and increase again when the indirect adverse effects on emission reduction of the removal of animals from agriculture (dotted red line) outweigh the gross emission reduction (dashed red line). Given the highly complex nature of the GHG balance, the shape of the GHG emission curve is uncertain. The position of the maximum and minimum of the curves on both axes are purely illustrative. Only relative positions are considered. Healthy diet limits the consumption of sugar, oil, meat, and dairy, as recommended by the Harvard Medical School (3). Vegetarian diet is without meat or fish consumption. Plant-based or vegan diet is without any animal-based products.

Integration of Health, Environment and Nutrient Supply: Milk Example

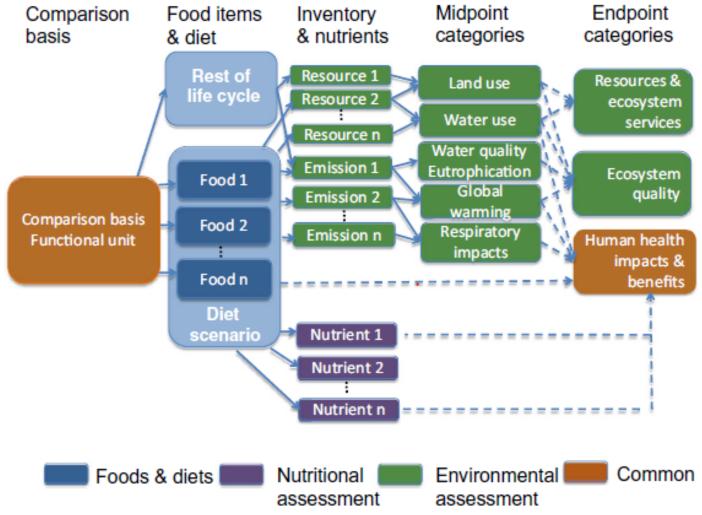


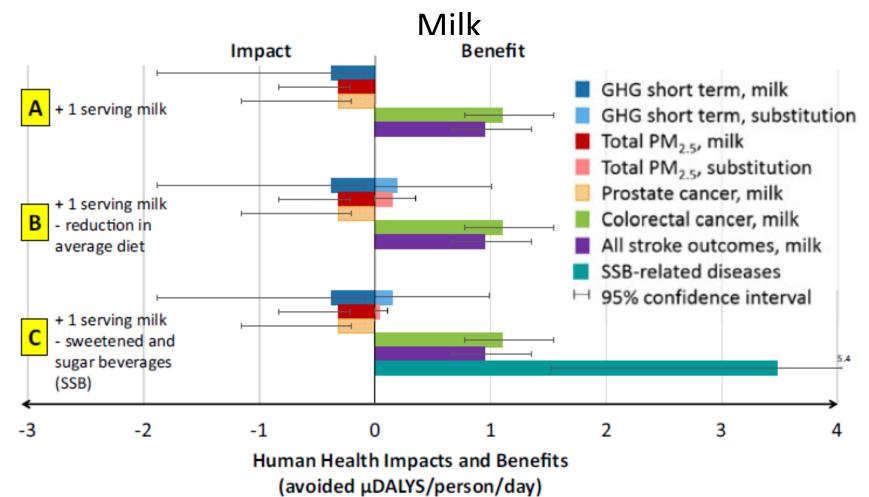
Fig. 1 Graphical representation of the combined nutritional and environmental health impact LCA framework. Dashed lines represent links between midpoint and endpoint categories that are useful to interpret impact scores, but whose quantification is also associated with a high degree of uncertainty

Stylianou et al. Int J Life Cycle Assess (2016) 21:734–746

What's a DALY?

- The disability-adjusted life year (DALY) is a measure of overall disease burden, expressed as the number of years lost due to ill-health, disability or early death. It was developed in the 1990s as a way of comparing the overall health and life expectancy of different countries.
- The DALY relies on an acceptance that the most appropriate measure of the effects of chronic illness is time, both time lost due to premature death and time spent disabled by disease.
 One DALY, therefore, is equal to one year of healthy life lost.

https://en.wikipedia.org/wiki/Disability-adjusted_life_year


Comparison made of current U.S. diet and alternatives adding or exchanging a 119 kcal serving of milk

The width of food groups corresponds to their caloric contribution to the total average US diet

Stylianou et al. Int J Life Cycle Assess (2016) 21:734–746

Outcomes in Health Benefits (µDALY) Compared to the Standard U.S. diet by Addition or Exchange of 1 serving Fluid

DALY = Disability Adjusted Life Years – gap between current health status and ideal health status

Stylianou et al. Int J Life Cycle Assess (2016) 21:734–746