Future of Feed Mill Manufacturing

Charles Stark, Ph.D.

Kansas State University

crstark@ksu.edu

Presentation Overview

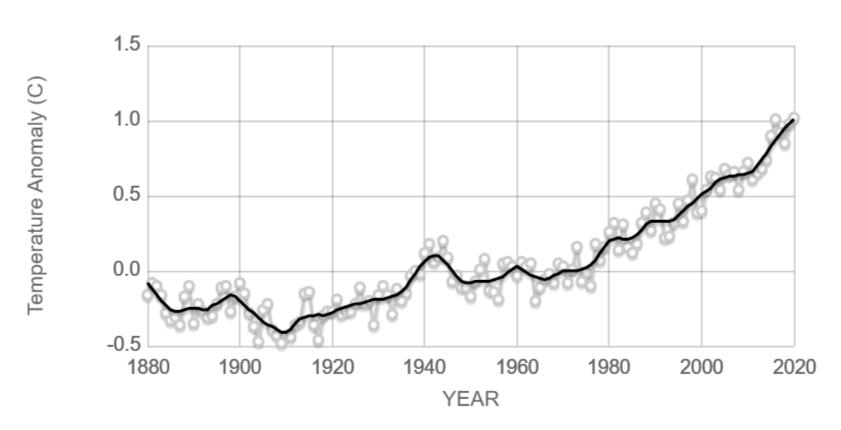
- Sustainability
- Energy Conservation
 - -Boiler
 - —Electricity
 - -Transportation
- Biosecurity
- Feed Mill Efficiency
 - Automation
 - Batching accuracy
 - -Shrink

Sustainability

Sustainability is the capacity to endure in a relatively ongoing way across various domains of life. In the 21st century, it refers generally to the capacity for Earth's biosphere and human civilization to co-exist.

Economic Sustainability

 Economic sustainability refers to practices that support long-term economic growth without negatively impacting social, environmental, and cultural aspects of the community.


Feed Mill

- Customer expectations vs Animal performance
- Automations vs Employees
- Environment vs Cost

Major Challenges to the Feed Industry

- Climate Change/Warming of the Earth
- Water Scarcity/Drought
- Global Population
- Global Pandemic
- Green Energy

Earth Temperature

Source: climate.nasa.gov

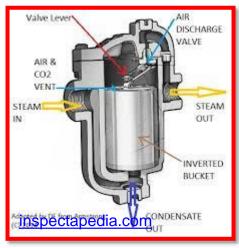
Effect of Weather on Animal Industry

- Availability of feed ingredients
- Cost of feed ingredients
- Use of more by-products
- Less water more droughts in certain regions
- CO₂ emissions regulations
- More natural disasters
 - Food
 - Oil
 - Human capital

ENERGY MANAGEMENT

Energy Management Resources

FMT - Online


SECTI	ON XI: ENERGY MANAGEMENT		
1	Organizing an Energy-Management Program	2020	XI-3
2	How to Calculate Energy Requirements by System	2020	XI-6
3	Energy Audit	2020	XI-12
4	Energy Calculations and Conservation Opportunities	2020	XI-16
5	Methods of Conserving Energy	2020	XI-28
6	Resources	2020	XI-32

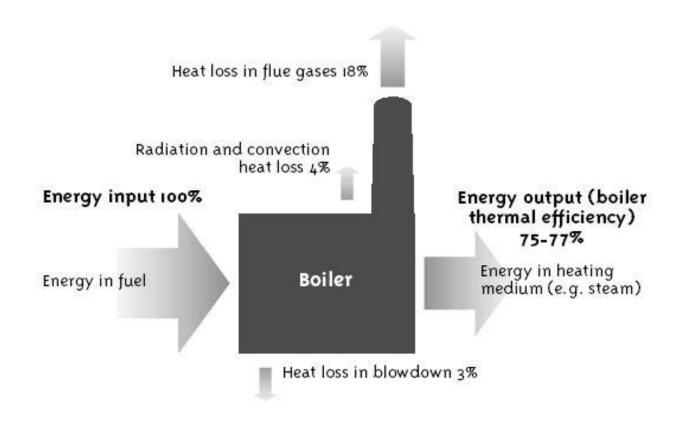
Energy Goals/KPI

- Do you have energy Key Performance Indicators?
 - BTU/ton
 - MCF or Gal/ton
 - kWh/ton
 - \$\$\$/ton
 - Operational efficiency
 - Motor operating at capacity
 - Throughput by process
- Energy management is good for sustainability and the environment.

Energy Audits

Steam

Electricity



Boiler

Motors and Lights

Record watts of lights used, but not necessary.

```
— Watts per hr./day ______ / 1000 = kW/hr._____
```

 List equipment systems and number of hours running day, but not being used.

— Motor _____ HP ___ Running System Not Used Hr./Day _____

Air Compressor

Record pressure at compressor with no air users

operating.

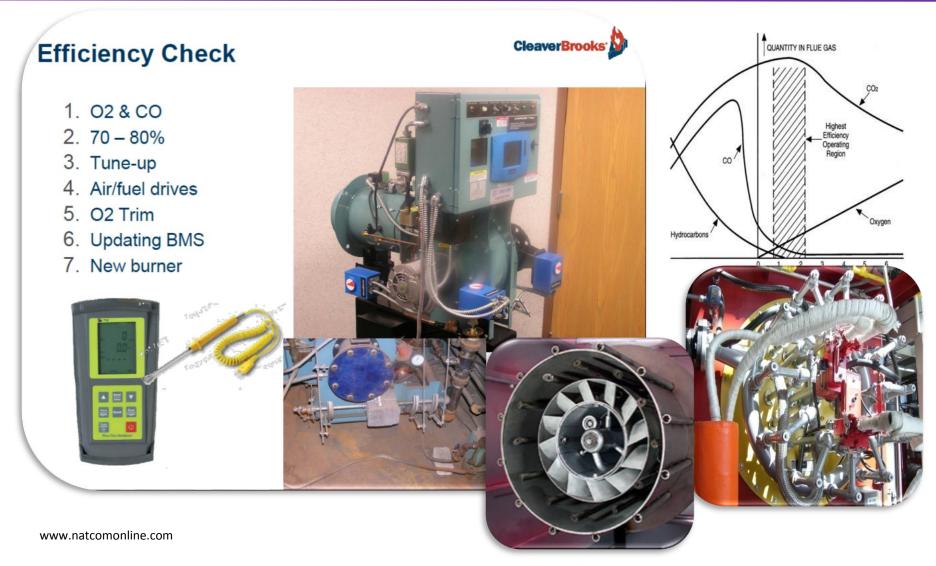
15 min____

30 min____

45 min

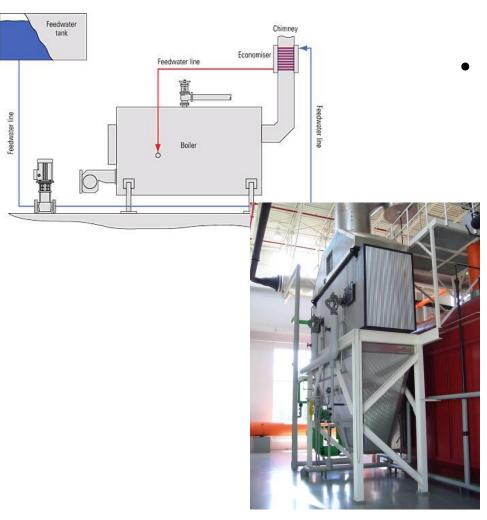
60 min____

• If more than a 10 lb. drop in 1 hour, identify all air leaks.


Number

- Does air compressor draw air from outside?
- Yes ____ No____

ENERGY CONSERVATION


Boiler Efficiency Analysis

http://www.energysolutionscenter.org 3/9/08

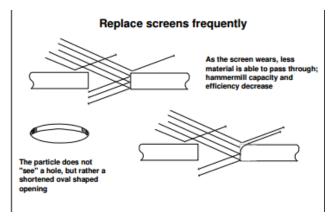
Source: Steve Connor, 2010

Energy Savings - Economizer

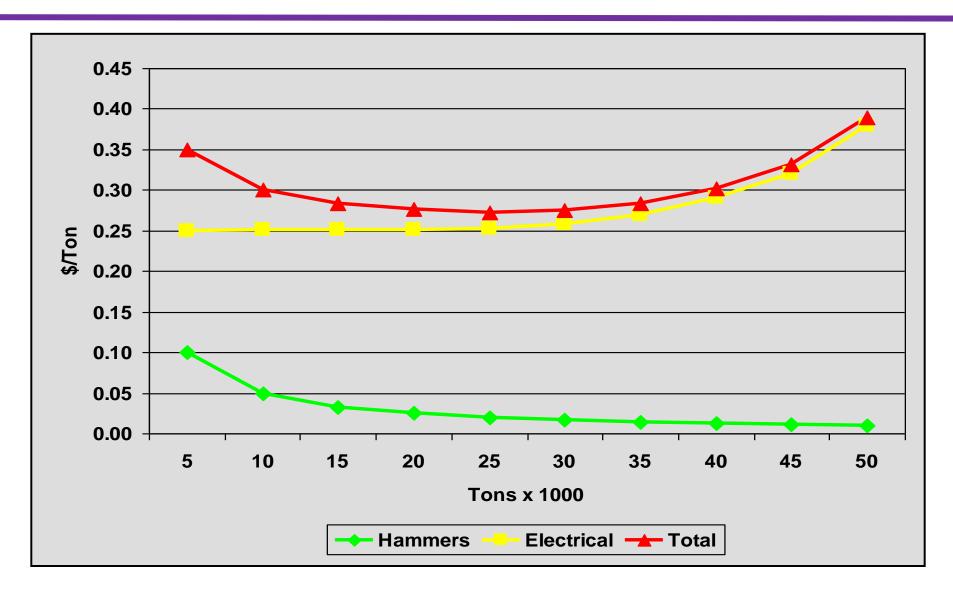
- Example 500 hp Boiler
 - 20,000,000 BTU
 - 5% recovered with economizer
 - 1,000,000 BTU's
 - Water returned to boiler

Hammermill Efficiency

Maintenance cost


 \$0.02 – 0.05 per ton grinding corn for a complete feed

Energy cost


\$0.15 - \$0.35 per ton

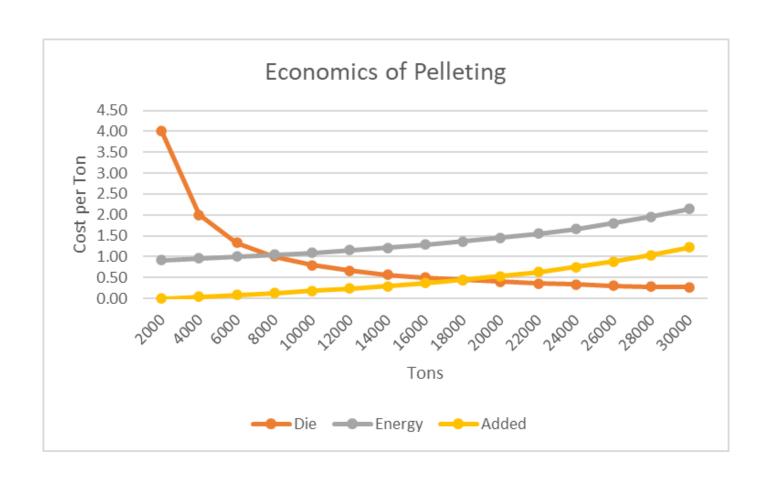
Optimization of Grinding

Pellet Mill Efficiency

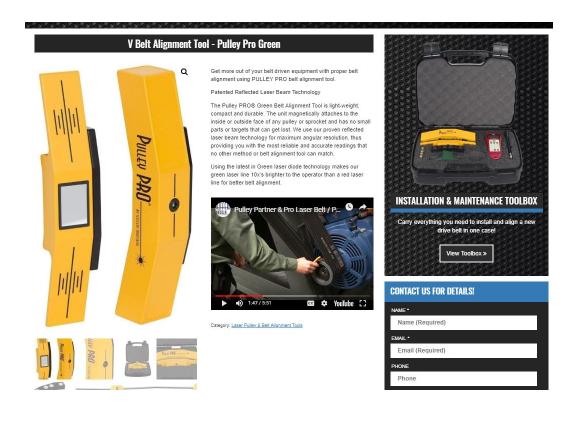
Temperature Moisture

http://www.cpmroskamp.com/pelletmill/products/pelletmills/

Conditioner

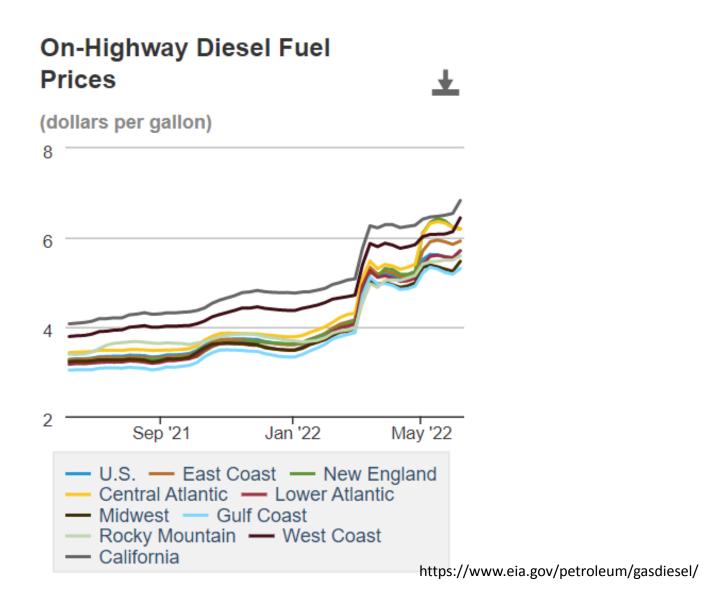


VFD


Die & Rolls

Optimization of Pelleting

Laser Align V-Belts



Direct Drive Gearboxes

Eliminates belt slippage and power transfer problems.

Transportation Fuel Cost

Feed Delivery – Transportation Cost

Feed Delivery	Tons Delivered						
	21	23	25	27			
Cost/Load, \$	100	100	100	100			
Delivery Cost, \$/ton	4.76	4.35	4.00	3.70			
Additional Cost, \$/ton	1.06	0.64	0.30	0			

Feed Delivery	Round Trip Miles to Farm						
	20	30	40	50			
Cost/Load, \$							
(\$5/ton@24ton/Load)	120	120	120	120			
Cost Per Mile	6.0	4.0	3.0	2.4			

BIOSECURITY

Biosecurity Policy

Visitors Policy

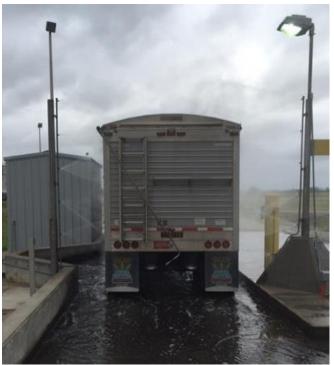
- Days since last contact with animals
- Clothing while at the plant (boots, coveralls, gloves)

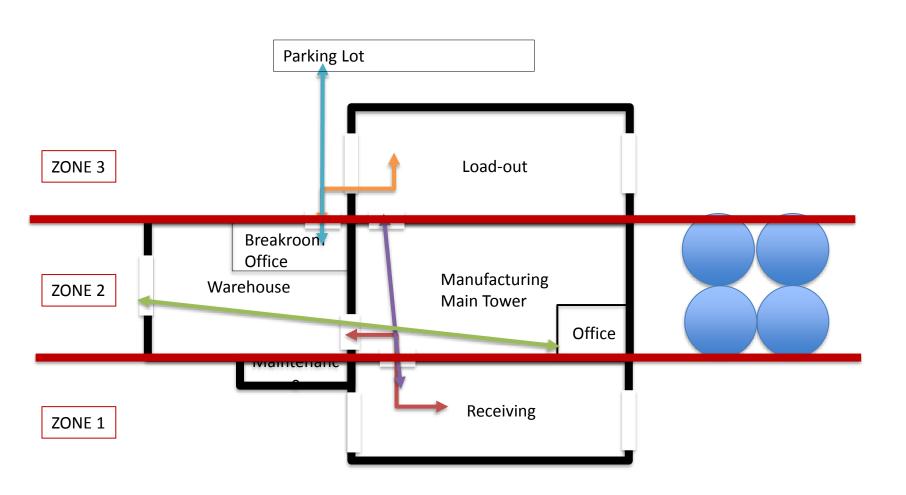
Ingredient purchasing

- Verified suppliers
- Purchasing specifications (quarantine days)

Employee Policy

- Animals at home
- Hygiene
- In-plant movement


PLEASE SIGN IN & OUT HERE


Vehicle Sanitation

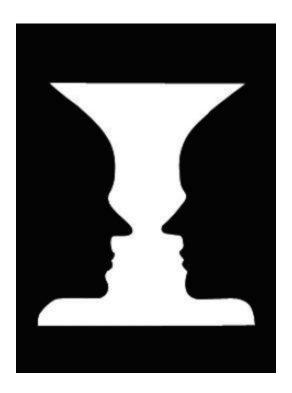
Photos: Frank Garczynski

People Preventive Control

Biosecurity at Feed Mill Doors

No Biosecurity

Boot Pad - Dry



Boot Pad - Wet

FEED MILL EFFICIENCY

Manufacturing Challenges

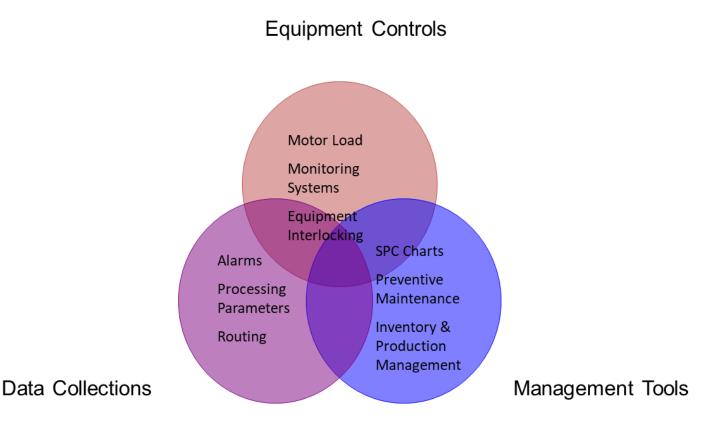
 Manufacturing challenges can be viewed as problems or an opportunity for improvement.

What do you see in the picture?

Production Cost vs Formulation vs Quality

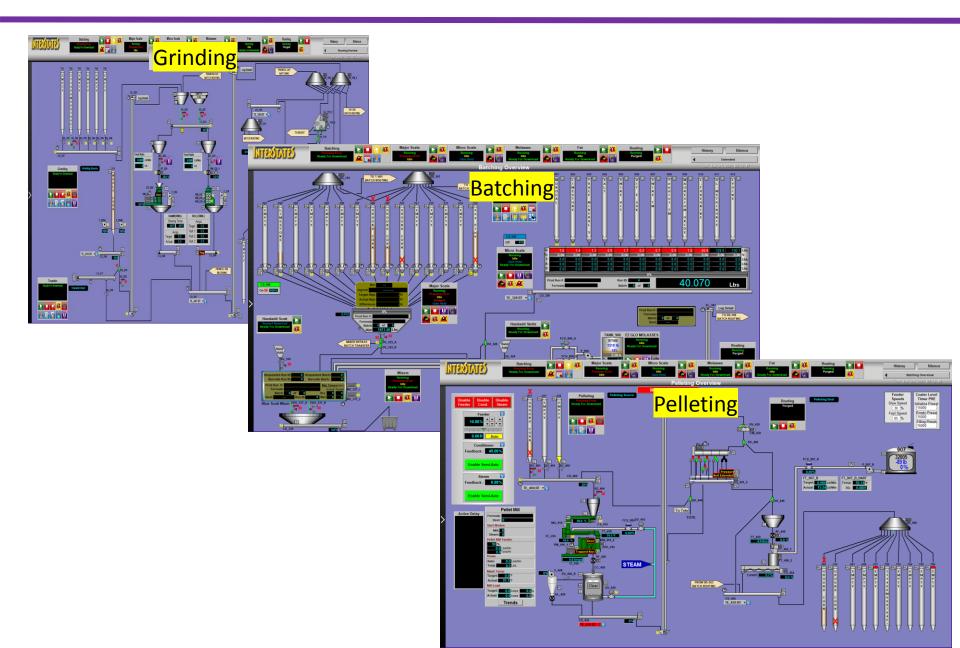
Least Cost Formulation Throughput Maximizing Feed Mill Cost Feed **Performance** Safety Pellet Quality **Maximizing** Customer **Animal Perception of Nutrient Performance** Quality Quality

Business/Customer Objectives


- Lowest live production cost
- Lowest feed cost
- Lowest manufacturing cost
- Lowest delivery cost
- Production of a premium product
- Customer feed specifications
 - –Nutrient requirements
 - –Particle size
 - Pellet quality and pellet fines

Feed Mill Key Performance Indicators

Productivity

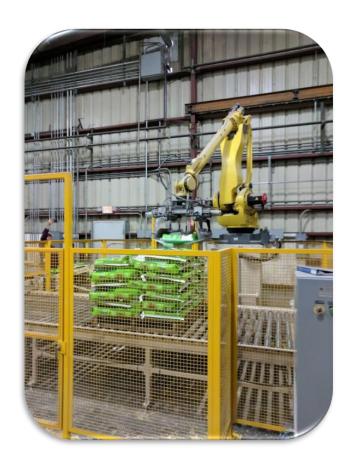

- Tons/man hr
- Changeovers
- Tons per run
- Energy per ton
 - Electrical
 - Fuel
- Actual vs. scheduled hrs
- Bagged tons per day
- Downtime
 - Unplanned vs. planned
- Transportation efficiency
- Load-out waiting time
- Shrink
- Pellet quality

Integrated Computer Systems

Integrated computer systems manage the process and collect data simultaneously. Collected data can be analyzed or reported to multiple users and managers on site or in remote locations.

Process Automation

Smart Moisture Sensor Technology


NIR Moisture Analyzer

(1) Real-time

- (2) Accurate and repeatable
- (3) Big data; analyzed and transferred instantly
- (4) Relies less on human intervention BUT it is critical to understand and manage moisture for achieving meaningful long lasting results

Automated Packaging Lines

Microswitches and electric eyes are used to determine the position of bag during filing and location of pallets for robotic stacker.

Statistical Process Control

- SPC is the method of using specialized statistical probability methods to monitor and detect external influences on a systems performance.
- SPC should first be used to stabilize out-of-control processes, but it can also be used to monitor the consistency of products and services.

Source: Six Sigma for Dummies, 2012

Value of SPC

- Opens communication between departments
- Removes subjectivity of results
- Summarizes large amounts of data
- Converts numbers to visual charts
- Identifies changes in the system
- Identifies problems in the process
- Monitors the outcome of changes

Least Cost Formula vs. Batching Errors

Feed Mill Scales					
	%	3 ton Mix	Major +/-2 lbs	Minor +/- 1 lbs	
Corn	63.91	1917.3	1916-1918		
SBM	19.82	594.6	594-596		
DDGS	10.0	300.0	300		
Phosphate	1.38	41.4		41-42	
Salt	0.43	12.9		12-13	
Lysine	0.21	6.3		6-7	

Batch Production Report Data

- Determine the difference between the theoretical and actual amount of ingredient added.
 - Enter the "+" or "-" number into the excel spreadsheet.
 - Enter a minimum of 25 data points for each ingredient
 - Data points must be in sequential time order.
- Calculate the specification limits.
 - Determine the average amount/call for each ingredient.
 - Multiple the average amount by 1% (> 5 lbs /batch).
 - Multiple the average amount by 2% (< 3 lbs /batch).

Batching Data

BATCH RUN SUMMARY REPORT

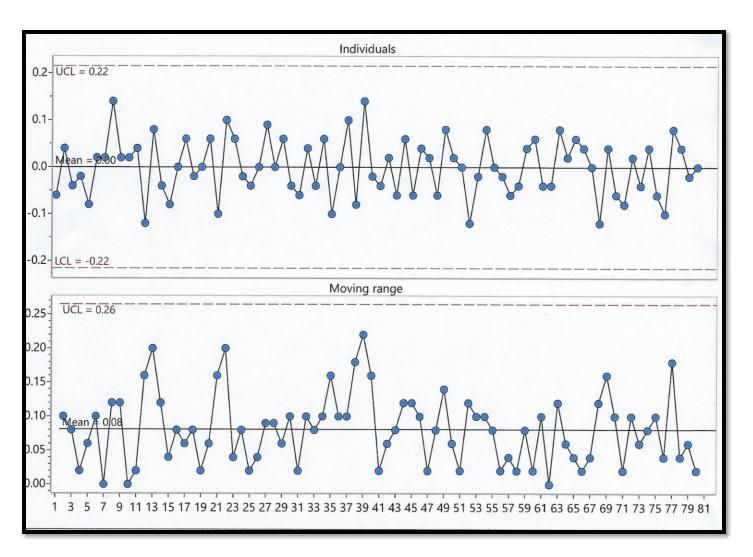
System: BATCHING Run ID: 9362

20140421001219MM Formula: 311453P000300P ~ PHASE 3 NURSERY

Work Order #: 9412 Oper: McAtee

Destination: 402

Start Time: 4/21/14 11:00


End Time: 4/21/14 10:43

Number of Batches: 1

Batch Size: 2000 lb

Item Code	Description	Lot Code	Source Equip	Target Quantity UOM		Actual Quantity UOM		Dev. %	Comments
HANDADD	SCALE								
23210	DL-METHIONINE		WAREHO	2.30	lb	2.30	lb	0.00	
23310	L-THREONINE		WAREH(2.30	lb	2.30	lb	0.00	
88009	HIPHOS 2700		WAREH(0.30	lb	0.30	lb	0.00	
	To	otal for HANDADD	SCALE:	4.90	lb _	4.90	lb	0.00	
MAJOR SC	<u>ALE</u>								
11102	GROUND CORN		311	1,275.38	lb	1,277.00	lb	0.13	
21100	SOYBEAN MEAL (DEHUL	.1	304	657.20	lb	658.00	lb	0.12	
		Total for MAJOR	SCALE:	1,932.58	lb	1,935.00	lb	0.13	
MICRO SCA	<u>LE</u>								
23100	L-LYSINE 78.8%		012	6.00	lb	6.00	lb	-0.03	
52120	LIMESTONE		002	19.51	lb	19.50	lb	-0.03	
52225	MONO CALCIUM PHOSP	ነ	001	22.01	lb	21 97	lh	-0.17	
52310	SALT		004	7.00	lb	7.17	lb	2.40	
71000	SWINE TRACE MINERAL		007	3.00	lb	2.88	lb	-4.03	
71100	SWINE VITAMIN KSU		005	5.00	lb	4.95	lb	-1.03	
		Total for MICRO	SCALE:	62.52	lb _	62.47	lb	-0.08	
	Total	al for 2014042100	1219MM: =	2,000.00	lb =	2,002.37	lb	0.12	

SPC Control Chart Example

Target addition = 4 lbs (1.8 kg)

Take Home Points

- Sustainability is an on-going process that must be evaluated in the animal and feed industry to help improve the current environmental conditions.
- Biosecurity requirements will continue to increase in feed mills and feed delivery.
- Automation of feed mills will continue to reduce operating costs and improve the accuracy of operations.
- Business Objectives and Key Performance Indicators
 must be part of the Business/Operations Culture.

Thank You

crstark@ksu.edu